Советы рыболову зимой Советы рыболову весной Советы рыболову летом Советы рыболову осенью Общие 

Разделы

  Основы
  Поплавочная удочка
  Спиннинг
  Спиннинг-приманки
  Донная удочка
  Нахлыст
  Другие снасти
  Рыбы наших водоемов
  Семейства рыб
  Наука ихтиология
  Рыбацкая кухня
  Техника безопасности
  Первая помощь
  Видео
  Статьи о рыбалке
  Разное




Рубрики

  Отчеты о рыбалке
  Календарь рыболова
  Мастерская рыбака
  Вопрос - Ответ
  Стихи про рыбалку
  Болезни рыб
  Насадки
  Эхолоты
  GPS приемники
 

проект лодок 667



Как работает эхолот и как им пользоваться?




Вместо этого они будут видны как горизонтальные строки, поскольку они плавают внутри конуса преобразователя. Следующие записи диаграмм сделаны на жидкокристаллическом эхолоте Lowrance X Его мощность ватт, разрешение экрана x пикселей, рабочая частота кГц. X - Пример 1. Это разделенный экран просмотра воды под лодкой. Диапазон глубин на правой стороне экрана - 0 - 60 футов. Слева на экране футовый "zoom", и диапазон глубин от 9 до 39 футов. Так как эхолот находится в автоматическом режиме, показанный словом "авто" в верхнем центре экрана он автоматически выбрал диапазон глубин, чтобы всегда сохранять сигнал дна на экране. Текущая глубина воды - Скорость прокрутки диаграммы была на один шаг ниже максимума. Отображения шумов наверху экрана могут опускаться на много футов ниже поверхности. Это называется Поверхностной Помехой. Она вызвана многими вещами, включая воздушные пузырьки, созданные течениями и волнами или следами от мотора лодки, мальком, планктоном и морскими водорослями. Только довольно большая рыба будет заметна, если она находится у поверхности, питаясь мелкой рыбой. Grayline используется, чтобы выделить контур дна, который мог бы иначе быть скрыт ниже деревьев и водорослей. Это может также дать ключ к пониманию состава дна. Жесткое дно возвращает очень сильный сигнал, отображаемый на экране широкой серой полосой. Мягкое, илистое и глинистое дно возвращает более слабый сигнал, который показывается узкой линией. Дно на этом экране жесткое, состоящее из камня. Вообще, термин "структура" используется, чтобы определять деревья, водоросли и другие объекты, возвышающиеся над дном, которые не являются частью самого дна. На этом экране, "C" - вероятно дерево, возвышающееся над дном. Эта запись диаграммы была сделана на искусственном озере. Деревья были оставлены во многих частях во время затопления, создавая естественную среду обитания для многих хищных рыб. X имеет существенное преимущество перед конкурентными эхолотами, он может показывать индивидуальную рыбу с характерной дуговой меткой на экране. На этом экране видно несколько больших рыб, держащихся у самого дна в точке "D", в то время как меньшая рыба находится в середине экрана и около поверхности. Большая, частичная дуга, показанная в точке "E" - не рыба. Мы проходили около входа в бухту, на дне которой были сотни шин объединенные друг с другом силовым кабелем. Другие тросы прикрепляли шины ко дну. Большая дуга в точке "E" появилась на экране, когда мы прошли над одним из больших тросов, крепящих шины ко дну.

Иллюстрирует полноэкранный режим представления подводного мира под лодкой. Диапазон глубин 8 - 38 футов, который получен с использованием футового ZOOM. Так как эхолот находится в автоматическом режиме, показано словом "авто" вверху в центре экрана он выбрал диапазон глубин так, чтобы всегда сохранять сигнал дна на экране. X имеет существенное преимущество перед конкурентными эхолотами, он может показывать индивидуальную рыбу в виде характерной дуговой метки на экране На этом экране видно несколько больших рыб, держащиеся у самого дна в точке "B", в то время как большая аналогичная рыба "A" находится непосредственно выше них. На этом экране, "C" - вероятно большое дерево, возвышающееся над дном. Поверхностная Помеха "D" наверху экрана спускается на 12 футов ниже поверхности. Маленькие рыбы видны чуть ниже линии поверхностной помехи. Главная Техника и тактика Спиннинг Катушки Приманки. Колебалки Воблеры Вращающиеся блесны вертушки Силиконовые приманки Поролоновые рыбки Спиннинговые приманки. Тюнинг моторных надувных лодок пвх своими руками Тюнинг моторных надувных лодок пвх своими руками часть 1 Владимир Колгин Когда лодка уже выбрана, то, как правило, при продаже вам Офсетные крючки-виды и правильный монтаж приманок на Офсетные крючки - виды и правильный монтаж приманок на офсетнике По роду деятельности мне приходится достаточно часто общаться с разными Спиннинг для джига - Мои лучшие спиннинги для джиговой Мои лучшие спиннинги для джиговой ловли Первый вопрос, который обычно задают рыболовы при выборе спиннинга: Лодочные электромоторы тест на скорость и Они будут накладываться на отражения дна, структуры водоема и сигналы рыбы, делая их трудноразличимыми или вообще незаметными.

как пользоваться и как работает эхолот

Решение этой проблемы состоит в том, чтобы делать преобразователь позволяющий воде течь мимо без создания турбулентности. Однако это сделать трудно из-за многих компонентов помещенных в современный преобразователь. Он должен быть маленьким, так, чтобы не сталкиваться с навесным мотором и его водным потоком. Преобразователь должен просто устанавливаться на транце так, чтобы просверливать минимум отверстий. Он должен подниматься без проблем при столкновении с подводными объектами. Фирма Lowrance запатентовала HS-WS преобразователь - самая передовая разработка в области высокоскоростных преобразователей.

Как пользоваться эхолотом — практические советы

Эта технология объединяет высокоскоростные измерения с простым крепежом и безопасным подъемом при столкновении с посторонним объектом на высокой скорости. Проблема кавитации не ограничена формой и размещением преобразователя. Многие корпуса лодок создают воздушные пузырьки, которые проходят через корпус преобразователя. У многих алюминиевых лодок эта проблема появляется из-за сотен головок заклепок, которые высовываются в воду. От каждой заклепки течет струйка воздушных пузырьков, когда лодка движется, особенно на высокой скорости.

  • Сазан его ловля мишин
  • Рыбалка полубарское запрет 2017
  • Руководство по снасти для рыбалки
  • Лодочные моторы в барсе архангельск
  • Чтобы ликвидировать эту проблему нужно устанавливать корпус преобразователя ниже воздушных пузырьков, струящихся от оболочки. Это обычно означает, что Вы должны установить крепежную скобу как можно ниже на транце. Преобразователь концентрирует звук в луч. Когда импульс звука исходит от преобразователя, он охватывает тем более широкую область, чем глубже он проходит. Если бы Вы нарисовали график движения сигнала, вы бы увидели, что он представляет собой конус, называемый "конический угол". Мощность звука наибольшая на оси конуса и постепенно уменьшается к краям. Чтобы измерить конический угол преобразователя, сначала мощность измеряется в центре или на оси конуса, а затем измеряется на удалении от центра. Когда достигается точка половины мощности от максимальной или -3db в электронных терминах , угол от средней оси измерен. Полный угол от точки -3db на одной стороне оси и точки -3db с другой стороны оси называется коническим углом. Это дает больший конический угол, поскольку Вы измеряете точку дальше от средней оси. Никакого отличия в работе преобразователя нет, только система измерений изменилась. Например, преобразователь, который имеет угол конуса 8 градусов при -3db, имел бы угол конуса 16 градусов в db. Lowrance, как и другие фирмы, предлагает преобразователи с разнообразными коническими углами. Широкий конический угол покажет Вам большую область подводного мира, за счет уменьшения показа глубины, так как необходимо перераспределить мощность передатчика. Более узкий конический угол преобразователи не будут показывать Вам такую большую область, но проникнет глубже, чем широкий конус. Узкий конический преобразователь концентрирует мощность передатчика в меньшую область. Сигнал дна на дисплее эхолота будет более широкий на широком коническом угловом преобразователе, чем на узком, потому что Вы видите большую область дна. Область обзора широкого конуса намного больше, чем у узкого конуса. Высокочастотные кГц преобразователи поставляются как с узким, так и с широким коническим углом. Широкий конический угол используется для пресной воды, а узкий конический угол используется в морской воде. Низкочастотные 50 кГц звуковые преобразователи обычно поставляются с коническим углом в диапазоне от 30 до 45 градусов. Хотя преобразователь наиболее чувствителен внутри конического угла, Вы можете также видеть объекты на экране и вне него; они только не так четки. Эффективный конический угол - область в пределах указанного конуса, который Вы хорошо видите на экране дисплея. Если рыба находится внутри конуса преобразователя, но чувствительность недостаточно высока, чтобы видеть ее, то у Вас узкий эффективный конический угол.

    Вы можете изменить эффективный конический угол преобразователя, изменяя чувствительность приемника. С низким значением чувствительности, эффективный конический угол узкий, показывая только цели строго внизу преобразователя и на небольшой глубине. При увеличении чувствительности увеличивается эффективный конический угол, что позволяет видеть Вам дальше в стороны. Тип воды, в которой вы используете гидролокатор, воздейст- вует на его работу в значительной степени. Звуковые волны проходят легко в чистой пресной воде, такой как во внутренних озерах. Однако в соленой воде, звук поглощается и отражается растворенными в воде солями. Высокочастотные волны наиболее восприимчивы к этому рассеиванию звуковых волн и не могут проникать через соленую воду также хорошо как низкочастотные волны. Часть проблемы с соленой водой в том, что это очень динамичная среда - океаны мира. Изгибы дна отображаются в его нижнем краю. Опытным рыбакам известно, что изображение не всегда соответствует действительности, так как оно показывает сведения с некоторым опозданием, а не в реальном времени. Информация, находящаяся в левой части, получена раньше, нежели с правой стороны.

    как пользоваться и как работает эхолот

    Поэтому, выбрав место для остановки лодки, ее нужно будет вернуть чуть назад. Как пользоваться эхолотом, расположившись на твердой земле? Для этой цели следует приобрести специальный сонатор, обладающий беспроводным сканером. Подобное приспособление отлично подойдет для изучения водоема с берега. Устройство необходимо будет хорошо прикрепить к леске и закинуть ее в воду.

    как пользоваться и как работает эхолот

    Разбираться с картинкой на экране нужно опираясь на то, сколько лучей у вашего прибора. Если один, соответственно изображение будет плоским и все коряги, рыба и прочие предметы в ровном движении будут показываться ровной линией. Двулучевой будет более четко показывать дно, трехлучевой продемонстрирует, кроме всего прочего, еще и место в пространстве. Многолучевой эхолот демонстрирует трехмерную картинку, в которой разбираться значительно проще. Также существует автоматический режим распознания рыбы, однако, он не надежен. Например, в серии HDS и Elite. Но несколько уступает в качестве.

    как пользоваться и как работает эхолот

    Точнее — в тонкости прорисовки деталей донных структур. С другой стороны, при быстром поиске на полной скорости разумеется, не на значительных глубинах , я бы предпочел включить именно ее. Потому как, при такой, существенно превышающей остальные частоте посылания импульса, картинка имеет шанс изобразиться детальнее, чем на частоте , не говоря уже о классических , 50, 83 кГц. На практике получается, что кГц все-таки намного чаще применяется, и включать есть смысл только либо на глубинах менее 6 метров или для тонкой прорисовки Даунсканера нижнего высокочастотного луча , и то до глубины 15 метров. Теперь подробнее про возможности новых частот Мало того что частота в два-четыре раза выше, чем классическая, привычная для нас кГц частота, так ещё и луч работающий на этой частоте имеет другую форму, плоскую, в виде лимонной дольки в разрезе. С одной стороны , узкая форма луча уменьшает площадь захват рыбы, когда лодка стоит неподвижно или Вы используете эхолот зимой на льду. С другой стороны , такая технология дает потрясающее качество изображения подводного ландшафта и рыбы в том числе. А также показывает картину происходящего прямо у дна 50см над и ниже , что у классического эхолота с частотами-лучами , 50, 83 кГц практически не получается. Скриншот копия экрана одного и того же места разными технологиями - новой кГц и старой кГц. Причем, классический внизу снабжен встроенной, самой продвинутой технологией Бродбенд для 2Д эхолотов. У дна за свальчиком стоит толстолобик приблизительно весом от 7 до 15 кг. Хорошо видно, что обычный эхолот даже с технологией Бродбенд еле отделяет рыбу от дна картинка внизу , в то время как Даунсканер сверху спокойно рисует, что под рыбой еще приличное расстояние до дна. Более того, на самом свальчике имеется какой-то инородный объект, возможно донная рыба или мусор. Что это, конкретно определить трудно, потому как донная рыба судак, сом всячески по своей натуре стараются с имитировать собой палку камень или что-то еще, но только не самого себя. С другой стороны, классический эхолот легче дает понять, что это именно рыба, и четкой дугой и различием цвета. На этом скриншоте, напротив, лучше видно группу толстолобиков с помощью технологии DSI картинка сверху на кГц частоте. Ну и конечно, самый лучший вариант на сегодняшний день для поиска рыбы и изучения структуры дна - это комплексная система Lowrance HDS с дополнительным блоком Lowrance StructureScan HD. В такой системе есть все, что только можно пожелать и все работает, одновременно выдавая полную картину.

    И 2Д эхолот с технологией Бродбендсаундер с частотами , 50, 83 в зависимости от установленного датчика и новая технология сканирования и даже способность излучения по сторонам от лодки до 80 метров в каждую сторону. То есть, суммарно иметь до метров в ширину полосу покрытия лучами с качеством изображения, сравнимым с рентгеновским снимком или даже скорее фотографией. Камера подводного наблюдения не идет ни в какое сравнение с такой системой, потому как прозрачность воды не имеет для нее никакого значения. Иногда камера все-таки нужна для детального рассмотрения объекта с ближней дистанции, после того, как он найден Структурсканером. Такие приборы могут работать как на одной из двух частот, так и одновременно на двух. Существуют так же и экзотические модели производства фирмы Humminberd, в которых формируются три и шесть лучей — для расширения зоны просмотра в первом случае и для создания псевдотрехмерной картины во втором. Глубина обнаружения подводных объектов и точность их различения при одинаковой мощности излучения зависит от частоты. В выпускаемых ранее эхолотах использовались либо высокие кГц — в эхолотах Lowrance и Eagle, кГц — в эхолотах Garmin, Raymarine и др. В настоящее время, в связи с широким распространением двухчастотных эхолотов, остались лишь две частоты — 50 и кГц, позволяющие использовать один кристалл для работы на двух частотах одновременно и порознь. Ширина диаграммы излучения обратно пропорциональна частоте излучения — чем выше частота излучения, тем уже конус, и тем самым выше плотность заключенной в нем звуковой энергии, а отсюда — большая глубина и лучшая способность обнаружения мелких объектов, более подробное отображение на экране. При работе на низких частотах ширина конуса намного шире и, соответственно, плотность энергии в конусе меньше со всеми вытекающими отсюда последствиями. Но, с другой стороны, более широкая диаграмма излучения позволяет обнаруживать рыбу в более широкой зоне, чем при работе на высокой частоте. Появление двухчастотных эхолотов позволило объединить достоинства каждой из частот в одном приборе и избавило покупателя от необходимости разрешать проблему выбора эхолота с широким или узким лучом. Современные двухчастотные двухлучевые эхолоты позволяют работать с одним из двух имеющихся лучей, а также с обоими сразу. Фирмы-производители рыбопоисковых эхолотов обычно выпускают большое количество моделей преобразователей с различными углами излучения. Так, компания Garmin предлагает преобразователи на частоте кГц с углами конуса от 8 до 20 градусов, на частоте 50 кГц — с углом 45 градусов.

    как пользоваться и как работает эхолот

    Двухлучевые эхолоты этого производителя имеют ширину луча 15 и 45 градусов. Примерно такие же показатели имеют преобразователи и других фирм. Следует отметить, что преобразователи производят и поставляют всем изготовителям эхолотов несколько специализированных фирм. Влияние среды распространения ультразвуковых волн. Вода, являясь средой распространения созданных преобразователем ультразвуковых волн, оказывает существенное влияние на работу эхолота, поэтому знание особенностей прохождения волн в воде полезно владельцу для эффективного использования прибора. На эффективность работы эхолота оказывают влияние следующие характеристики среды распространения:. Затухание звуковой энергии в воде состоит из двух составляющих — затухание свободного пространства и затухание в среде распространения. Затухание свободного пространства — это абстрагированное от среды распространения, зависящее только от дальности, ослабление звуковой энергии. При активной гидролокации, когда звук проходит одно и то же расстояние дважды, затухание свободного пространства пропорционально четвертой степени глубины. Затухание энергии звуковых волн в воде объясняется ее поглощением и рассеиванием находящимися в воде минеральными и органическими частицами, микроорганизмами и пузырьками воздуха. Наименьшее затухание вносит пресная холодная вода — из-за низкой температуры она обладает более высокой плотностью и в ней находится минимум органики. В пресной воде с одинаковым успехом можно пользоваться эхолотами как с низкой, так и с высокой частотами излучения. Соленая морская вода, напротив, содержит большое количество солей, планктона и минеральных частиц, особенно в хорошо прогретых верхних слоях моря, поглощающих и рассеивающих энергию звуковых волн. Значительное ослабление энергии в соленой воде вносят содержащиеся в ней пузырьки воздуха, возникающие при образовании ветровых волн. Отражения в любой среде — в воде, в воздухе — образуются неоднородностями, отличными по плотности от среды. Ими могут быть какие-либо предметы камни, грунт, рыба, растительность, воздушные пузыри , либо слои воды с разной температурой так называемые термоклины, речь о которых пойдет позже. В глубоких водоемах может быть несколько тер-моклинов. Если в пресной воде затухание звуковой энергии на разных частотах практически одинаковы, то в морской воде затухание и отражение от термо-клинов с ростом частоты увеличивается. Поэтому в эхолотах, предназначенных для поиска рыбы в море, используются частоты 50 кГц, а в некоторых профессиональных эхолотах для больших глубин применяется частота 28 кГц.

    Дно пресноводных водоемов и морей имеет неоднородную структуру, включающую разнообразные по плотности грунты — ил, песок, глину, каменную плиту, галечные россыпи, покрытые, как правило, разнообразной растительностью. Все эти виды грунтов имеют разную способность отражать и поглощать звуковые волны. Таким образом, компьютер прибора создает на дисплее профиль дна, определяет плотность грунта твердый или илистые отложения , различает движущиеся в толще воды предметы и, в соответствии с заложенной в него программе, определяет их принадлежность, а сложные приборы определяют даже вид рыб и показывает их условное изображение. На вертикальном столбце в левой части экрана отображаются глубины расположения подводных объектов. В некоторых приборах эту информацию можно получить нажатием на соответствующий курсор, более совершенные показывают данные в окошечке курсора постоянно.

    Принцип работы эхолота и как им пользоваться?

    Эти приборы имеют ряд особенностей, связанных с условиями эксплуатации. Для таких изделий применяются специальные теплосберегающие корпуса. Монтаж осуществляется на специальный кронштейн с защитным подпружиненным элементом, который ставится на транец. Эта конструкция входит в базовую комплектацию при покупке эхолота. Для этого способа можно приобрести специальную модель или самостоятельно поместить в защитный корпус транцевый преобразователь. Правила эксплуатации разных моделей эхолотов могут различаться , ниже будут рассмотрены основные правила и особенности, характерные для всех современных устройств. Большинство современных приборов предоставляет пользователям следующие сведения: Управление эхолотом в зависимости от выбранной модели осуществляется при помощи клавиатуры или экранного меню. Данная функция позволяет увеличить и более детально изучить выбранный участок на экране прибора с учетом заданной глубины. В статье уже упоминалось о влиянии показателей чувствительности на функционирование эхолота. В большинстве современных моделей этот показатель подбирается устройством в автоматическом режиме, но при этом сохраняется возможность ручной регулировки пользователем. Для этого через меню настроек необходимо перейти в раздел Gain и откорректировать показатели чувствительности самостоятельно. Однако в спортивной рыбалке применяются только пьезоэлектрические устройства. Они достаточно компактные и подходят для небольших плавательных средств. В пьезоэлектрических преобразователях главным элементом является кристалл, состоящий из титаната бария иногда применяются и другие кристаллы покрытого металлом. Кристалл помещают в корпус из металла или пластика, после чего заливают специальными материалами, которые могут проводить звук. В современных эхолотах используются преобразователи, которые, отличаются друг от друга по конкретным признакам. Главная задача преобразователя установленного в эхолоте получать отражаемые сигналы и таким образом демонстрировать рыбаку, что происходит под водой. Это его важнейшая функция. Все эти данные выводятся на дисплей и позволяют рыбаку лучше ориентироваться в окружающей обстановке. Корпус преобразователя в современных эхолотах может быть изготовлен из пластмассы или металла это может быть бронза или латунь: Такая реакция может привести к повреждению плавательного средства. Еще одним плюсом металлического преобразователя является устанавливаемые в него зависит от модели датчики благодаря которым на экран выводятся данные о скорости лодки и температуре воды. Первые эхолоты, появившиеся в продаже, были однолучевыми. Однако вскоре появились приборы с двумя лучами.




  • Ловля на фидер на северском донце
  • Купить удилище земекс в москве
  • Как ловят леща на пробку






  • Нравится сайт? Поделись с другом!